FROM WASTE TO ENERGY: KONVERSI TERMAL LIMBAH PENGOLAHAN KAYU MENJADI BIO-OIL MELALUI TEKNIK PIROLISIS
DOI:
https://doi.org/10.15294/pemanfaatansdaindonesia.v0i0.6Keywords:
bio-oil, biomassa lignoselulosa, konversi termal, pirolisiAbstract
Eksplorasi bahan bakar baru terbarukan sangat krusial untuk mengantisipasi berkurangnya cadangan bahan bakar berbasis fosil. Biomassa lignoselulosa merupakan bahan baku yang sangat potensial dan dapat dikonversi menjadi berbagai tipe sumber energi melalui konversi termal. Salah satunya adalah biomassa yang berasal dari limbah industry kayu dengan kandungan lignin, selulosa dan hemiselulosa yang tinggi. Karena dominasi bahan bakar cair yang masih sangat tinggi hingga sekarang, konversi termal biomassa lignoselulosa menjadi bio-oil memiliki nilai benefit yang tinggi. Dalam bab ini, konversi termal biomassa lignoselulosa dengan berbagai teknik konversi dibahas, dengan fokus pada proses konversi termal biomassa menjadi bio-oil melalui proses pirolisis. Kondisi operasi dan parameter penting lain dalam proses pirolisis akan dibahas bersamaan dengan karakteristik produk utama dan produk samping yang dihasilkan dari proses pirolisis.
References
Abdulkhani, A., Karimi, A., Mirshokraie, A., Hamzeh, Y., Marlin, N., Mortha, G. 2010. Isolation and chemical structure characterization of enzymatic lignin from Populus deltoides wood. J. Appl. Polym. Sci. 118: 469–479.
Alessio, F., Ranzi, E. 2019. Modelling of Thermochemical Conversion of Biomasses in Elsevier Reference Collection in Chemistry, Molecular Sciences and Chemical Engineering.
Attia, M., Farag, S., Habibzadeh, S., Hamzehlouia, S., Chaouki, J. 2016. Fast Pyrolysis of Lignocellulosic Biomass for the Production of Energy and Chemicals: A Critical Review. Current Organic Chemistry 20(23): 2458–2479.
Bajpai, P. 2018. Wood and Fiber Fundamentals in Biermann's Handbook of Pulp and Paper (Third Edition) vol 1: Raw Material and Pulp Making: 19-74.
Balat, M. 2009. Gasification of Biomass to Produce Gaseous Products. Energy Sources, Part A 31(6): 516-526.
Banu J.R., Kavitha, S., Kannah, R.Y., Devi, T.P., Gunasekaran, M., Kim, S.H., Kumar, G. 2019. A review on biopolymer production via lignin valorization. Bioresour. Technol. 290: 121790.
BP Statistical Review of World Energy and the BP Energy Outlook. 2019. BP Statistical Review-2019 Indonesia's Energy Market in 2018. bp.com/statsreview.
Bridgwater, A.V. 2004. Biomass fast pyrolysis. Therm Sci 8(2): 21-49.
Bridgwater, A.V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38: 68–94.
Bridgwater, A.V. 2018. Pyrolysis of Solid Biomass: Basics, Processes, and Products. In: Meyers R. (eds) Encyclopedia of Sustainability Science and Technology. New York: Springer.
Bridgwater, A.V., Peacocke, G.V.C. 2000. Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4(1): 1-73.
Butterman, H.C., Castaldi, M.J. 2010. Biomass to Fuels: Impact of Reaction Medium and Heating Rate. Environmental Engineering Science 27(7): 539-555.
Chang, Q. Gao, R., Li, H., Yu, G., Liu, X., Wang, F. 2018. Understanding of formation mechanisms of fine particles formed during rapid pyrolysis of biomass. Fuel 216: 538–547.
Chang, S.H. 2020. Rice Husk and Its Pretreatments for Bio-oil Production via Fast Pyrolysis: A Review. Bioenergy Res. 13: 23–42.
Chen, Y., Yang, H., Wang, X., Zhang, S., Chen, H. 2012. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresour. Technol. 107: 411–418.
Cherubini, F., Strømman, A.H. 2011. Principles of Biorefining in Biofuels: 3-24.
D’Blasi, C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34: 47–90.
Demirbas, A. 2006. Production and characterization of bio-chars from biomass via pyrolysis. Energy Sources Part A Recover. Util. Environ. Eff. 28: 413–422.
Demirbas, A., Arin, G. 2002. An overview of biomass pyrolysis. Energy Sources 24: 471-482.
Doumer, M.E., Arízaga, G.G.C., Da Silva, D.A., Yamamoto, C.I., Novotny, E.H., Santos, J.M., Dos Santos, L.O., Wisniewski, A., De Andrade, J.B., Mangrich, A.S. 2015Slow pyrolysis of di
erent Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection. J. Anal. Appl. Pyrolysis 113: 434–443.
Escudero-Oñate, C., Fiol, N., Poch J., Villaescusa, 2017. I. Valorisation of Lignocellulosic Biomass Wastes for the Removal of Metal Ions from Aqueous Streams: A Review in: Tumuluru, J.S. (Eds). Biomass Volume Estimation and Valorization for Energy. IntechOpen. DOI: 10.5772/65958.
Fakayode, O.A., Aboagarib, E.A.A., Zhou, C., Ma, H. 2020. Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar—A review. Bioresour. Technol. 297: 122–408.
Farzad, S., Mandegari, M.A., Görgens, J.F. 2016. A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel 12: 483-495.
Ghani, W.A.W.A.K., Mohd, A., da Silva, G., Bachmann, R.T., Taufiq-Yap, Y.H., Rashid, U., Al-Muhtaseb, A.H. 2013. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Ind. Crops Prod. 44: 18–24.
Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D. Wagner, N., Gorini, R. 2019. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24: 38-50.
González, A., Goikolea, E., Barrena, J.A., Mysyk, R. 2016. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 58: 1189–1206.
Greenhalf, C.E., Nowakowski, D.J., Harms, A.B., Titiloye, J.O., Bridgwater, A.V. 2012. Sequential pyrolysis of willow SRC at low and high heating rates—Implications for selective pyrolysis. Fuel 93: 692–702.
Haider, K.M., Guggenberger, G. 2005. Organic Matter‒Genesis and Formation in Encyclopedia of Soils in the Environment: 93-101.
Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813): 804-807.
Holladay, J., White, J., Bozell, J., Johnson, D. 2007. Top Value-Added Chemicals from Biomass. Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin.
Jeong, Y.W., Choi, S.K., Choi, Y.S., Kim, S.J. 2015. Production of biocrude-oil from swine manure by fast pyrolysis and analysis of its characteristics. Renew. Energy 79: 14–19.
Jing, Y., Guo, Y., Xia, Q., Liu, X., Wang, Y. 2019. Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. Chem 5: 2520–2546.
Kadarwati, S. Qurrochman, T. Kurniawan C., Jumaeri, Kasmui. 2020. Feasibility study on the utilization of mahogany (Swietenia macrophylla King) wood as a raw material in the bio-oil production. Journal of Physics Conference Series 1567:022029.
Khazraji, A.C., Robert, S. 2013. Interaction Effects between Cellulose and Water in Nanocrystalline and Amorphous Regions: A Novel Approach Using Molecular Modeling. Journal of Nanomaterials 2013. Nomor artikel 409676. 10 halaman.
Kumar, A., Jones, D.D., Hanna, M.A. 2009. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies 2: 556-581.
Kweku, D.K., Bismark, O., Maxwell, A., Desmond, K.A., Danso, K.B., Oti-Mensah, E.A., Quachie, A.T., Adormaa, B.B. 2017. Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. Journal of Scientific Research & Reports 17(6): 1-9.
Lam, S.S., Chase, H.A. 2012. A review on waste to energy processes using microwave pyrolysis. Energies 5: 4209-4232.
Lee, Y., Eum, P.R.B., Ryu, C., Park, Y.K., Jung, J.H., Hyun, S. 2013. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresour. Technol. 130: 345–350.
Lehmann, J. 2009. Biological carbon sequestration must and can be a win-win approach. Clim. Change 97: 459–463.
Lewandowski, W.M., Januszewicz, K., Kosakowski, W. 2019. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—A review. J. Anal. Appl. Pyrolysis 140: 25–53.
Liu, X., Wang, X., Yao, S., Jiang, Y., Guan, J., Mu, X. 2014. Recent advances in the production of polyols from lignocellulosic biomass and biomass-derived compounds. RSC Adv. 4: 49501-49520.
Lu, H., Ip, E., Scott, J., Foster, P., Vickers, M., Baxter, L.L. 2010. Effects of particle shape and size on devolatilization of biomass particle. Fuel 89: 1156–1168.
Lu, H., Ip, E., Scott, J., Foster, P., Vickers, M., Baxter, L.L. 2010. Effects of particle shape and size on devolatilization of biomass particle. Fuel 89: 1156–1168.
Lu, Q., Li, W.Z., Zhu, X.F. 2009. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers. Manag. 50: 1376–1383.
Luo, Z., Zhou, J. 2012. Thermal Conversion of Biomass. In: Chen, WY., Seiner, J., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation. New York: Springer.s
Machmudah, S., Wahyudiono, Kanda, K., Goto, M. 2017. Hydrolysis of Biopolymers in Near-Critical and Subcritical Water in Water Extraction of Bioactive Compounds: From Plants to Drug Development: 69-107
Mallick, D., Mahanta, P., Moholkar, V.S. 2017. Co-gasification of coal and biomass blends: Chemistry and engineering. Fuel 204: 106–128.
Mandø, M. 2013. Direct combustion of biomass In: Biomass Combustion Science, Technology and Engineering: 61-83.
McKendry, P. 2002a. Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1): 47-54.
McKendry, P. 2002b. Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83(1): 55-63.
Menendez, J., Loredo, J. 2018. Biomass Production in Surface Mines: Renewable Energy Source for Power Plants. WSEAS Transactions on Environment and Development 14: 205-211.
Moreno, A.I. Font, R. 2015. Pyrolysis of furniture wood waste: Decomposition and gases evolved. J. Anal. Appl. Pyrolysis 113: 464–473.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673–686.
Najib, S., Erdem, E. 2019. Current progress achieved in novel materials for supercapacitor electrodes: Mini review. Nanoscale Adv. 1: 2817–2827.
Oliveira, F.R., Patel, A.K., Jaisi, D.P., Adhikari, S., Lu, H., Khanal, S.K. 2017. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 246: 110–122.
Putro, J.N., Soetaredjo, F.E., Lin, S.Y., Ju, Y.H., Ismadji, S. 2016. Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv. 6: 46834–46852.
Qambrani, N.A., Rahman, M.M., Won, S., Shim, S., Ra, C. 2017. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 79: 255–273.
Qian, Y., Zhang, J., Wang, J. 2014. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation. Bioresour. Technol. 174: 95–102.
Rahman, A.A., Sulaiman, F., Abdullah, N. 2015. Effect of temperature on pyrolysis product of empty fruit bunches. AIP Conf. Proc. 1657: 4915150.
Ren, S., Ye, X.P., Borole, A.P. 2017. Separation of chemical groups from bio-oil water-extract via sequential organic solvent extraction. J. Anal. Appl. Pyrolysis 123: 30–39.
Sannigrahi, P., Pu, Y., Ragauskas, A. 2010. Cellulosic biorefineries—unleashing lignin opportunities. Current Opinion in Environmental Sustainability 2(5–6): 383-393.
Scheller, H.V., Ulvskov, P. 2010. Hemicelluloses. Annual Review of Plant Biology 61:263-289.
Sharma, D., Saini, A. 2020. Lignocellulosic Waste Valorization and Biorefineries Concept. In: Lignocellulosic Ethanol Production from a Biorefinery Perspective. Singapore: Springer.
Shen, J., Wang, X.S., Garcia-Perez, M., Mourant, D., Rhodes, M.J., Li, C.Z. 2009. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88: 1810–1817.
Sipilä, K. 1993. New power production technologies: various options for biomass and cogeneration. Bioresour. Technol. 46: 5–12.
Stiegel, G.J., Maxwell, R.C. 2001. Gasification technologies: The path to clean, affordable energy in the 21st century. Fuel Process. Technol. 71: 79–97.
Tajali, A. 2015. Panduan Penilaian Potensi Biomassa Sebagai Sumber Energi Alternatif di Indonesia. Jakarta: Penabulu Aliance.
Timilsina, G.R. 2014. Biofuels in the long-run global energy supply mix for transportation. Phil. Trans. R. Soc. A 372: 20120323.
Uchimiya, M., Lima, I.M., Klasson, K.T., Chang, S.; Wartelle, L.H.; Rodgers, J.E. 2010. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J. Agric. Food Chem. 58(9): 5538–5544.
Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A., Lima, I.M. 2011. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J. Agric. Food Chem. 59: 2501–2510.
van Haveren, J., Scott, E.L., Sanders, J. 2008. Bulk chemicals from biomass. Biofuels, bioproducts and biorefining 2(1): 41-57.
Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W. 2010. Lignin Biosynthesis and Structure. Plant Physiology 153: 895–905.
Wang, S. 2013. High-Efficiency Separation of Bio-Oil. In Biomass Now—Sustainable Growth and Use; Books on Demand: Norderstedt, Jerman.
Whitty, K.J., Zhang, H.R., Eddings, E.G. 2008. Emission from syngas combustion. Combust. Sci. Technol. 180: 1117–1136.
Wu, L., Moteki, T., Gokhale, A.A., Flaherty, D.W., Toste, F.D. 2016. Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. Chem 1: 32–58.
Xu, Y., Hu, X., Li, W., Shi, Y. 2011. Preparation and Characterization of Bio-oil from Biomass in: Shaukat, S.S. Progress in Biomass and Bioenergy Production. IntechOpen.
Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management 45(5): 651-671.
Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conv Manag 45: 651-671.
Yang, J., He, Q., Yang, L. 2019. A review on hydrothermal co-liquefaction of biomass. Appl. Energy 250: 926–945.
Yang, X. Lyu, H., Chen, K., Zhu, X., Zhang, S., Chen, J. 2014. Selective Extraction of Bio-oil from Hydrothermal Liquefaction of Salix psammophila by Organic Solvents with Different Polarities through Multistep Extraction Separation. BioResources 9: 5219–5233.
Zadeh, Z.E., Abdulkhani, A., Aboelazayem, O., Saha, B. 2020. Recent Insights into Lignocellulosic Biomass Pyrolysis: A Critical Review on Pretreatment, Characterization, and Products Upgrading. Processes 8: 799-830.
Zafar, S. 2020. Thermal Conversion of Biomass tersedia di https://www.bioenergyconsult.com/biomass-pyrolysis/
Zhou, C.H., Xia, X., Lin, C.X., Tong, D.S., Beltramini, J. 2011. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chemical Society Reviews 40(11): 5588–5617.