TRANSFORMASI ALFA PINENA DARI MINYAK TERPENTIN MELALUI REAKSI METOKSILASI
DOI:
https://doi.org/10.15294/pemanfaatansdaindonesia.v0i0.4Keywords:
alfa Pinena, metoksilasi, minyak terpentinAbstract
Minyak terpentin merupakan salah satu minyak atsiri hasil isolasi dari pohon pinus. Sebagian besar pohon pinus di Indonesia adalah jenis Pinus merkusii yang menghasilkan terpentin dengan komposisi 80% alfa-pinena. Minyak terpentin dimanfaatkan sebagai pelarut dalam industri farmasi, pengolahan resin, dan cat. Peningkatan nilai tambah dari minyak terpentin dapat dilakukan dengan dengan mengisolasi senyawa alfa pinena dan membuat senyawa turunan dari alfa-pinena, misalnya melalui reaksi metoksilasi alfa-pinena. Senyawa alfa pinena dan turunannya dapat digunakan sebagai bahan flavor dan fragrance. Temuan yang diperoleh dapat menjadi kajian ilmiah tentang Produksi alfa pinena dan senyawa derivat minyak terpentin. Senyawa yang diperoleh dari penelitian ini akan membuka peluang bagi penelitian-penelitian baru dan orisinil, khususnya ke arah paten, serta kajian pengembangan senyawa bahan alam dalam skala industri.
References
Ávila, M. C.; Comelli, N. A.; Rodríguez-Castellón, E.; Jiménez-López, A.; Carrizo Flores, R.; Ponzi, E. N.; Ponzi, M. I. 2010. Study of Solid Acid Catalysis for the Hydration of α-Pinene. J. Mol. Catal. Chem., 322 (1–2), 106–112. https://doi.org/10.1016/j.molcata.2010.02.028.
Avila M.C., Ponzi M.I., Comelli N.A., 2015. Hydration of α-Pinene over Heteropoly Acid H3PW12O40 and H3PMo12O40. Journal Chromatogr Sep Tech, , 6(7) : 1-6. doi:10.4172/2157-7064.1000302.
Castanheiro, J. E.; Guerreiro, L.; Fonseca, I. M.; Ramos, A. M.; Vital, J. 2008. Mesoporous Silica Containing Sulfonic Acid Groups as Catalysts for the Alpha-Pinene Methoxylation. In Studies in Surface Science and Catalysis; Elsevier,; Vol. 174, pp 1319–1322. https://doi.org/10.1016/S0167-2991(08)80132-2.
Catrinescu, C.; Fernandes, C.; Castilho, P.; Breen, C. 2014. Selective Methoxylation of α-Pinene to α-Terpinyl Methyl Ether Over Al3+ Ion-Exchanged Clays. Appl. Catal. Gen. 2015, 489 (1), 171–179. https://doi.org/10.1016/j.apcata.10.028.
Catrinescu, C.; Fernandes, C.; Castilho, P.; Breen, C.; Carrott, M. M. L. R.; Cansado, I. P. P. 2013. Selective Methoxylation of Limonene over Ion-Exchanged and Acid-Activated Clays. Appl. Catal. Gen., 467, 38–46. https://doi.org/10.1016/j.apcata.2013.07.012.
Hędrzak E., Węgrzynowicz A., Rachwalik R., Sulikowski B., Michorczyk P., 2019. Monoliths with MFI zeolite layers prepared with the assistance of 3D printing: Characterization and performance in the gas phase isomerization of α-pinene, Applied Catalysis A, General, , 579, 75–85. https://doi.org/10.1016/j.apcata.2019.04.017.
Hensen, K.; Mahaim, C.; Hölderich, W. F. 1997. Alkoxylation of Limonene and Alpha-Pinene over Beta Zeolite as Heterogeneous Catalyst. Appl. Catal. Gen., 149 (2), 311–329. https://doi.org/10.1016/S0926-860X(96)00273-6.
Julián E. Sánchez-Velandia, Villa A.L., 2019. Isomerization of α- and β- pinene epoxides over Fe or Cu supported MCM-41 and SBA-15 materials, Applied Catalysis A, General. 2019, 580, 17–27. DOI: 10.1016/j.apcata..04.029.
Li, L., S. Liu, Y Shi, S. Yu, C. Xie, & C. Qi. 2013. Synthesis of Terpinyl Acetate Using OctadecylamineEthoxylate Ionic Liquids as Catalysts. Res ChemIntermed, , 39:2095–2105. DOI 10.1007/s11164-012-0741-4.
Liu, S., C. Xie, S. Yu, F. Liu, K. Ji., 2008. Esterification of α-Pinene and Acetic Acid Using Acidic Ionic Liquids as Catalysts. Catalysis Communications, , 9: 1634–1638. https://doi.org/10.1016/j.catcom.2008.01.017.
Maki‑Arvela P., Shcherban N., Lozachmeur C., Russo V., Johan Wärnå J., Yu. Murzin D., 2019. Isomerization of α-Pinene Oxide: Solvent Effects, Kinetics and Thermodynamics, Catalysis Letters, , 149:203–214, https://doi.org/10.1007/s10562-018-2617-8
Matos, I.; Silva, M. F.; Ruiz-Rosas, R.; Vital, J.; Rodríguez-Mirasol, J.; Cordero, T.; Castanheiro, J. E.; Fonseca, I. M. 2014. Methoxylation of α-Pinene over Mesoporous Carbons and Microporous Carbons: A Comparative Study. Microporous Mesoporous Mater., 199, 66–73. https://doi.org/10.1016/j.micromeso.2014.08.006.
Mochida, T.; Ohnishi, R.; Horita, N.; Kamiya, Y.; Okuhara, T. 2007. Hydration of α-Pinene over Hydrophobic Zeolites in 1,4-Dioxane-Water and in Water. Microporous Mesoporous Mater., 101 (1–2), 176–183. https://doi.org/10.1016/j.micromeso.2006.10.022.
Murakami V.T., Marques I.O., Cella R. 2019., Ultrasound-Assisted Conversion of Biomass Turpentine into α-Terpineol, Chemistry Select, , 4, 8800 –8806. https://doi.org/10.1002/slct.201902239.
Pito, D. S.; Fonseca, I. M.; Ramos, A. M.; Vital, J.; Castanheiro, J. E. 2009. Methoxylation of α-Pinene over Poly(Vinyl Alcohol) Containing Sulfonic Acid Groups. Chem. Eng. J., 147 (2–3), 302–306. https://doi.org/10.1016/j.cej.2008.11.020.
Pito, D. S.; Matos, I.; Fonseca, I. M.; Ramos, A. M.; Vital, J.; Castanheiro, J. E. 2010. Methoxylation of α-Pinene over Heteropolyacids Immobilized in Silica. Appl. Catal. Gen., 373 (1–2), 140–146. https://doi.org/10.1016/j.apcata.2009.11.006.
Salvador V.T., Silva E.S., Gonçalves P.G.C., Cella R., 2020. Biomass transformation: Hydration and isomerization reactions of turpentine oil using ion exchange resins as catalyst, Sustainable Chemistry and Pharmacy, , 15, 100214. https://doi.org/10.1016/j.scp.2020.100214.
Wei, Z.; Xiong, D.; Duan, P.; Ding, S.; Li, Y.; Li, L.; Niu, P.; Chen, X. 2020. Preparation of Carbon-Based Solid Acid Catalysts Using Rice Straw Biomass and Their Application in Hydration of α-Pinene. Catalysts, 10 (2), 213. https://doi.org/10.3390/catal10020213.
Wijayati, N.; Pranowo, H. D.; Jumina; Triyono. 2011. Synthesis Of Terpineol from α-Pinene Catalyzed by TCA/Y-Zeolite. Indones. J. Chem. Sci., 11 (3), 234–237.
Wijayati, N.; Pranowo, H. D.; Jumina, J.; Triyono, T. 2013. The Acid Catalyzed Reaction of α-Pinene Over Y-Zeolite. Indones. J. Chem., 13 (1), 59–65. https://doi.org/10.22146/ijc.21327.
Wijayati, N.; Handayani, T.; Supartono. 2017. Isomerization Reaction of A-Pinene Using Zirconia/Natural Zeolite Catalysts. Asian J. Chem., 29 (8), 1705–1708. https://doi.org/10.14233/ajchem.2017.20552.
Wróblewska A., Mi ˛adlicki P., Tołpa J., Sre´nscek-Nazzal J., Koren Z.C., Michalkiewicz B., 2019. Influence of the Titanium Content in the Ti-MCM-41 Catalyst on the Course of the α-Pinene Isomerization Process, Catalysts, , 9, 396; doi:10.3390/catal9050396
Yadav, M. Kr.; Patil, M. V.; Jasra, R. V. 2009. Acetoxylation and Hydration of Limonene and α-Pinene Using Cation-Exchanged Zeolite Beta. J. Mol. Catal. Chem., 297 (2), 101–109. https://doi.org/10.1016/j.molcata.2008.09.017.
Zielińska, A.; Ferreira, N. R.; Durazzo, A.; Lucarini, M.; Cicero, N.; Mamouni, S. E.; Silva, A. M.; Nowak, I.; Santini, A.; Souto, E. B. 2019. Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. Molecules, 24 (15), 2683. https://doi.org/10.3390/molecules24152683.