KARAKTERISTIK MATERIAL HIBRIDA KITOSAN-GEOPOLIMER DAN POTENSINYA DALAM APLIKASI MEMBRAN POLIMER ELEKTROLIT
DOI:
https://doi.org/10.15294/pemanfaatansdaindonesia.v0i0.3Keywords:
abu layang, geopolimer, kitosan, membranAbstract
Membran elektrolit yang saat ini dikembangkan masih terbatas pada material yang bersifat toksik dan mahal. Kitosan sebagai polimer organik alami memungkinkan dilakukannya modifikasi untuk menghasilkan sifat fisik dan kimia yang diinginkan, salah satunya sifat elektrolit. Geopolimer merupakan polimer anorganik dengan sifat kuat dan memiliki rantai Si-O-Al sehingga diharapkan meningkatkan sifat konduktivitasnya sekaligus memperkuat sifat penahanan air. Oleh karena itu diperlukan penyelidikan terhadap karakteristiknya apabila kedua material digabungkan. Geopolimer disintesis dari abu layang melalui reaksi aktivasi alkali dan kondensasi. Membran kitosan-geopolimer disintesis dengan metode inversi fasa dengan jumlah geopolimer divariasi sebesar 0, 2, 3, 4, 5 dan 6% (b/b) dari berat kitosan. Hasil penyelidikan menunjukkan bahwa sifat konduktivitas proton, water uptake, methanol uptake, derajat swelling air dan derajat swelling metanol meningkat dengan penambahan geopolimer. Berdasarkan perhitungan selektivitas bahan, membran dengan 2% geopolimer menunjukkan sifat terbaik dengan harga konduktivitas proton, water uptake, methanol uptake, derajat swelling air dan derajat swelling metanol berturut-turut 9,583 x 10-5 S/cm; 34,98%; 29,76%; 14,58%; dan 3,89%. Analisis FT-IR dan SEM menunjukkan telah terbentuk material hibrida penggabungan antara kitosan dan geopolimer.
References
Al-Sagheer, F. and Muslim, S. 2010. Thermal and mechanical properties of chitosan/SiO2 hybrid composites, Journal of Nanomaterials, 2010. doi: 10.1155/2010/490679.
Atmaja, L. et al. 2019. GPTMS-Montmorillonite-filled biopolymer chitosan membrane with improved compatibility, physicochemical, and thermal stability properties, Malaysian Journal of Fundamental and Applied Sciences, 15(4), pp. 492–497.
Davidovits, J. 2018. Why Alkali-Activated Materials (AAM) are Not Geopolymers ?, Geopolymer Institute Library. doi: 10.13140/RG.2.2.34337.25441.
Davidovits, J. and Quentin, S. 1991. GEOPOLYMERS Inorganic polymerie new materials, 37, pp. 1633–1656.
Duxson, P. et al. 2007. The effect of alkali and Si / Al ratio on the development of mechanical properties of metakaolin-based geopolymers’, Colloids and Surfaces A: Physicochem. Eng. Aspects, 292, pp. 8–20. doi: 10.1016/j.colsurfa.2006.05.044.
Fadzallah, I. A. et al. 2014. A study on ionic interactions in chitosan – oxalic acid polymer electrolyte membranes, Journal of Membrane Science. Elsevier, 463(2014), pp. 65–72. doi: 10.1016/j.memsci.2014.03.044.
Giorgi, L. and Leccese, F. 2013. Fuel Cells: Technologies and Applications, The Open Fuel Cells Journal, 6, pp. 1–20.
Handayani, S. and Dewi, E. L. 2011. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells, International Journal of Science and Engineering, 2(2), pp. 27–30. doi: 10.12777/ijse.2.2.27-30.
Kim, D. J., Jo, M. J. and Nam, S. Y. 2015. A review of polymer – nanocomposite electrolyte membranes for fuel cell application, Journal of Industrial and Engineering Chemistry. The Korean Society of Industrial and Engineering Chemistry, 21, pp. 36–52. doi: 10.1016/j.jiec.2014.04.030.
Kusumastuti, E. 2013. Sintesis Geopolimer Berbahan Abu Vulkanik dengan Penambahan Aluminium Hidroksida sebagai Pengatur Rasio Silika dan Alumina, Sainteknol, 11(1), pp. 45–56.
Kusumastuti, E. et al. 2016. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes, in AIP Conference Proceedings, pp. 1–9. doi: 10.1063/1.4945491.
Kusumastuti, E. et al. 2017. The Effect of Silane Addition on Chitosan-Fly Ash/CTAB as Electrolyte Membrane, in IOP Conference Series: Materials Science and Engineering. doi: 10.1088/1757-899X/172/1/012016.
Kusumastuti, E. and Widiarti, N. 2015. Sintesis Geopolimer Berbusa Berbahan Dasar Abu Layang Batubara dengan Hidrogen Peroksida sebagai Foaming Agent, Sa, 13, pp. 17–28.
Luukkonen, T. et al. 2019. Application of alkali-activated materials for water and wastewater treatment: a review, Reviews in Environmental Science and Biotechnology. Springer Netherlands, 18(2), pp. 271–297. doi: 10.1007/s11157-019-09494-0.
Ma, J. and Sahai, Y. 2013. Chitosan biopolymer for fuel cell applications, Carbohydrate Polymers. Elsevier Ltd., 92(2), pp. 955–975. doi: 10.1016/j.carbpol.2012.10.015.
Oliveira, A. C. De et al. 2020. Chitosan/gellan gum ratio content into blends modulates the sca ff olding capacity of hydrogels on bone mesenchymal stem cells, Materials Science & Engineering C. Elsevier, 106(August 2019), p. 110258. doi: 10.1016/j.msec.2019.110258.
Pandis, C. et al. 2014. Chitosan – silica hybrid porous membranes, Materials Science & Engineering C. Elsevier B.V., 42, pp. 553–561. doi: 10.1016/j.msec.2014.05.073.
Permana, D. et al. 2015. Synthesis and Characterization of Chitosan/Phosphotungstic Acid- Montmorillonite Modified by Silane for DMFC Membrane, Indonesian Journal of Chemistry, 15(3), pp. 218–225. doi: 10.22146/ijc.21188.
Prapainainar, C. et al. 2016. Surface Modification of Mordenite in Nafion Composite Membrane for Direct Ethanol Fuel Cell and Its Characterizations: Effect of Types of Silane Coupling Agent, Environmental Chemical Engineering. Elsevier B.V., 4(3), pp. 2637–2646. doi: 10.1016/j.jece.2016.05.005.
Purwanto, M. et al. 2016. Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite- crosslinked GPTMS for direct methanol fuel cells, The Royal Society of Chemistry (RSC Advances). Royal Society of Chemistry, 6, pp. 2314–2322. doi: 10.1039/C5RA22420A.
Suka, I. G., Simanjuntak, W. and Dewi, E. L. 2010. Pembuatan Membran Polimer Elektrolit Berbasis Polistiren Akrilonitril (SAN) untuk Aplikasi Direct Methanol Fuel Cell, Jurnal Natur Indonesia, 13(1), pp. 1–6.
Sulistyani, M. and Huda, N. 2018. Perbandingan Metode Transmisi dan Reflektansi Pada Pengukuran Polistirena Menggunakan Instrumentasi Spektroskopi Fourier Transform Infra Red, Indonesian Journal of Chemical Science, 7(2), pp. 195–198.
Swaghatha, A. I. A. K. and Cindrella, L. 2019. Self-humidifying novel chitosan-geopolymer hybrid membrane for fuel cell applications, 223(February).
Tiwary, A. K. and Rana, V. 2010. Cross-linked chitosan films : Effect of cross-linking density on swelling parameters, Pak. J. Pharm.Sci, 23(4), pp. 443–448.
Ueki, T. and Watanabe, M. 2008. Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities, Macromolecules, 41(11), pp. 3739–3749. doi: https://doi.org/10.1021/ma800171k.
Vaghari, H. et al. 2013. Recent advances in application of chitosan in fuel cells, Sustainable Chemical Processes, 1(16), pp. 1–12.
Wang, Y. et al. 2010. Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC’, Chemical Engineering & Processing: Process Intensification. Elsevier B.V., 49(3), pp. 278–285. doi: 10.1016/j.cep.2010.02.004.
Wei, B. et al. 2013. Surface modification of filter medium particles with silane coupling agent KH550’, Colloids and Surfaces A: Physicochemical and Engineering Aspects. Elsevier B.V., 434, pp. 276–280. doi: 10.1016/j.colsurfa.2013.05.069.
Ye, Y., Rick, J. and Hwang, B. 2012. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells, pp. 913–963. doi: 10.3390/polym4020913.