MENGUNGKAP POTENSI AKTIVITAS ANTIKANKER SENYAWA CITRUS FLAVONOID (Citrus sp.)
DOI:
https://doi.org/10.15294/pemanfaatansdaindonesia.v0i0.1Keywords:
citrus, flavonoid, inflamasi, polifenol, ROSAbstract
Flavonoid adalah senyawa polifenol yang dibagi lagi menjadi 6 kelompok: isoflavonoid, flavanon, flavanol, flavonol, flavon, dan antosianidin yang terdapat pada berbagai tumbuhan. Buah-buahan seperti family jeruk (Citrus sp.) adalah sumber utama flavonoid. Flavonoid telah terbukti memiliki berbagai macam efek antikanker: flavonoid mampu memodulasi aktivitas enzim reactive oxygen species (ROS), berperan dalam memodulasi siklus sel, menginduksi apoptosis, autophagy, dan menekan proliferasi dan invasi sel kanker. Flavonoid memiliki aksi ganda dalam mengatur homeostasis ROS, flavonoid bertindak sebagai antioksidan dalam kondisi normal dan merupakan pro-oksidan yang kuat dalam sel kanker yang memicu jalur apoptosis dan menurunkan jalur pensinyalan proinflamasi.
References
Abotaleb, M.; Samuel, S. M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D., 2019. Flavonoids in cancer and apoptosis. Cancers., 11.
Ahamad, M. S.; Siddiqui, S.; Jafri, A.; Ahmad, S.; Afzal, M.; Arshad, M., 2014. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS ONE., 9.
Ahmed, O. M.; Ahmed, A. A.; Fahim, H. I.; Zaky, M. Y., 2019. Quercetin and naringenin abate diethylnitrosamine/acetylaminofluorene-induced hepatocarcinogenesis in Wistar rats: the roles of oxidative stress, inflammation and cell apoptosis. Drug and Chemical Toxicology., 0, 1–12.
Alipour, B.; Rashidkhani, B.; Edalati, S., 2016. Dietary flavonoid intake, total antioxidant capacity and lipid oxidative damage: A cross-sectional study of Iranian women. Nutrition., 32, 566–572.
Andarwulan, N.; Kurniasih, D.; Apriady, R. A.; Rahmat, H.; Roto, A. V.; Bolling, B. W., 2012. Polyphenols, carotenoids, and ascorbic acid in underutilized medicinal vegetables. Journal of Functional Foods., 4, 339–347.
Banjarnahor, S. D. S.; Artanti, N., 2014. Antioxidant properties of flavonoids. Medical Journal of Indonesia., 23, 239–244.
Bao, L.; Liu, F.; Guo, H. bin; Li, Y.; Tan, B. bo; Zhang, W. xing; Peng, Y. hui, 2016. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. Tumor Biology., 37, 11365–11374.
Blackadar, C. B., 2016. Historical review of the causes of cancer. World Journal of Clinical Oncology., 7, 54–86.
Bock, F. J.; Tait, S. W. G., 2020. Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology., 21, 85–100.
Chen, Y. Y.; Chang, Y. M.; Wang, K. Y.; Chen, P. N.; Hseu, Y. C.; Chen, K. M.; Yeh, K. T.; Chen, C. J.; Hsu, L. S., 2019. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environmental Toxicology., 34, 233–239.
Chiche, J.; Brahimi-Horn, M. C.; Pouysségur, J., 2010. Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer. Journal of Cellular and Molecular Medicine., 14, 771–794.
Chirumbolo, S.; Bjørklund, G.; Lysiuk, R.; Vella, A.; Lenchyk, L.; Upyr, T., 2018. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. International Journal of Molecular Sciences., 19.
Cirmi, S.; Ferlazzo, N.; Lombardo, G. E.; Maugeri, A.; Calapai, G.; Gangemi, S.; Navarra, M., 2016. Chemopreventive agents and inhibitors of cancer hallmarks: May citrus offer new perspectives? Nutrients., 8, 1–38.
Cirmi, S.; Maugeri, A.; Ferlazzo, N.; Gangemi, S.; Calapai, G.; Schumacher, U.; Navarra, M., 2017. Anticancer potential of Citrus juices and their extracts: A systematic review of both preclinical and clinical studies. Frontiers in Pharmacology., 8.
Currò, M.; Risitano, R.; Ferlazzo, N.; Cirmi, S.; Gangemi, C.; Caccamo, D.; Ientile, R.; Navarra, M., 2016. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways. Scientific Reports., 6, 1–11.
Cvorovic, J.; Tramer, F.; Granzotto, M.; Candussio, L.; Decorti, G.; Passamonti, S., 2010. Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Archives of Biochemistry and Biophysics., 501, 151–157.
Danciu, C.; Avram, S.; Pavel, I. Z.; Ghiulai, R.; Dehelean, C. A.; Ersilia, A.; Minda, D.; Petrescu, C.; Moaca, E. A.; Soica, C., 2018: Main Isoflavones Found in Dietary Sources as Natural Anti-inflammatory Agents. Current Drug Targets., 19, 841–853.
Dean, M.; Murphy, B. T.; Burdette, J. E., 2017. Phytosteroids beyond estrogens: Regulators of reproductive and endocrine function in natural products. Molecular and Cellular Endocrinology., 442, 98–105.
Ding, S.; Jiang, H.; Fang, J., 2018. Regulation of immune function by polyphenols. Journal of Immunology Research., 2018.
Dorta, D. J.; Pigoso, A. A.; Mingatto, F. E.; Rodrigues, T.; Prado, I. M. R.; Helena, A. F. C.; Uyemura, S. A.; Santos, A. C.; Curti, C., 2005: The interaction of flavonoids with mitochondria: Effects on energetic processes. Chemico-Biological Interactions., 152, 67–78.
Elango, R.; Athinarayanan, J.; Subbarayan, V. P.; Lei, D. K. Y.; Alshatwi, A. A., 2018. Hesperetin induces an apoptosis-triggered extrinsic pathway and a p53- independent pathway in human lung cancer H522 cells. Journal of Asian Natural Products Research., 20, 559–569.
Feng, X.; Weng, D.; Zhou, F.; Owen, Y. D.; Qin, H.; Zhao, J.; WenYu; Huang, Y.; Chen, J.; Fu, H.; Yang, N.; Chen, D.; Li, J.; Tan, R.; Shen, P., 2016. Activation of PPARγ by a Natural Flavonoid Modulator, Apigenin Ameliorates Obesity-Related Inflammation Via Regulation of Macrophage Polarization. EBioMedicine., 9, 61–76.
Fraga, C. G.; Galleano, M.; Verstraeten, S. V.; Oteiza, P. I., 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Molecular Aspects of Medicine., 31, 435–445.
Ginwala, R.; Bhavsar, R.; Chigbu, D. G. I.; Jain, P.; Khan, Z. K., 2019: Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants., 8, 1–30.
Gorlach, S.; Fichna, J.; Lewandowska, U., 2015. Polyphenols as mitochondria-targeted anticancer drugs. Cancer Letters., 366, 141–149.
Granado-Serrano, A. B.; Martín, M. A.; Bravo, L.; Goya, L.; Ramos, S., 2006. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). Journal of Nutrition., 136, 2715–2721.
Granado-Serrano, A. B.; Mart́in, M. A.; Izquierdo-Pulido, M.; Goya, L.; Bravo, L.; Ramos, S., 2007. Molecular mechanisms of (-)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line. Journal of Agricultural and Food Chemistry., 55, 2020–2027.
Gupta, S. C.; Kunnumakkara, A. B.; Aggarwal, S.; Aggarwal, B. B., 2018. Inflammation, a Double-Edge Sword for Cancer and Other Age-Related Diseases. Frontiers in immunology., 9, 2160.
Hadi, S. M.; Asad, S. F.; Singh, S.; Ahmad, A., 2000. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life., 50, 167–171.
He, Y. C.; Zhou, F. L.; Shen, Y.; Liao, D. F.; Cao, D., 2014. Apoptotic death of cancer stem cells for cancer therapy. International Journal of Molecular Sciences., 15, 8335–8351.
Hosseini, M. M.; Karimi, A.; Behroozaghdam, M.; Javidi, M. A.; Ghiasvand, S.; Bereimipour, A.; Aryan, H.; Nassiri, F.; Jangholi, E., 2017. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line. World Neurosurgery., 108, 94–100.
Im, N. K.; Jang, W. J.; Jeong, C. H.; Jeong, G. S., 2014. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-κB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells. Journal of Medicinal Food., 17, 855–861.
Imran, M.; Rauf, A.; Shah, Z. A.; Saeed, F.; Imran, A.; Arshad, M. U.; Ahmad, B.; Bawazeer, S.; Atif, M.; Peters, D. G.; Mubarak, M. S., 2019. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytotherapy Research., 33, 263–275.
Jenie, R. I.; Amalina, N. D.; Ilmawati, G. P. N.; Utomo, R. Y.; Ikawati, M.; Khumaira, A.; Kato, J. Y.; Meiyanto, E., 2019. Cell cycle modulation of CHO-K1 cells under genistein treatment correlates with cells senescence, apoptosis and ROS level but in a dose-dependent manner. Advanced Pharmaceutical Bulletin., 9.
Jeon, J. S.; Kwon, S.; Ban, K.; Kwon Hong, Y.; Ahn, C.; Sung, J. S.; Choi, I., 2019. Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2. Nutrition and Cancer., 71, 861–869.
Jin, S.; Zhang, Q. Y.; Kang, X. M.; Wang, J. X.; Zhao, W. H., 2010. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Annals of Oncology., 21, 263–268.
Kadioglu, O.; Nass, J.; Saeed, M. E. M.; Schuler, B.; Efferth, T., 2015: Kaempferol is an anti-inflammatory compound with activity towards NF-ℵB pathway proteins. Anticancer Research., 35, 2645–2650.
Kashafi, E.; Moradzadeh, M.; Mohamadkhani, A.; Erfanian, S., 2017. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomedicine and Pharmacotherapy., 89, 573–577.
Khoo, B. Y.; Chua, S. L.; Balaram, P., 2010. Apoptotic effects of chrysin in human cancer cell lines. International Journal of Molecular Sciences., 11, 2188–2199.
Kiebish, M. A.; Han, X.; Cheng, H.; Chuang, J. H.; Seyfried, T. N., 2008. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the Warburg theory of cancer. Journal of Lipid Research., 49, 2545–2556.
Koblovská, R.; Macková, Z.; Vítková, M.; Kokoška, L.; Klejdus, B.; Lapčík, O., 2008. Isoflavones in the rutaceae family: Twenty selected representatives of the genera citrus, fortunella, poncirus, ruta and severinia. Phytochemical Analysis., 19, 64–70.
Koolaji, N.; Koolaji, N.; Shammugasamy, B.; Shammugasamy, B.; Schindeler, A.; Schindeler, A.; Schindeler, A.; Dong, Q.; Dong, Q.; Dong, Q.; Dehghani, F.; Dehghani, F.; Valtchev, P.; Valtchev, P., 2020. Citrus Peel Flavonoids as Potential Cancer Prevention Agents. Current Developments in Nutrition., 4, 1–20.
Kroemer, G.; Pouyssegur, J., 2008. Tumor Cell Metabolism: Cancer’s Achilles’ Heel. Cancer Cell., 13, 472–482.
Lebelo, M. T.; Joubert, A. M.; Visagie, M. H., 2019: Warburg effect and its role in tumourigenesis. Archives of Pharmacal Research., 42, 833–847.
Lee, B. S.; Lee, C.; Yang, S.; Park, E. K.; Ku, S. K.; Bae, J. S., 2019. Suppressive effects of pelargonidin on lipopolysaccharide-induced inflammatory responses. Chemico-Biological Interactions., 302, 67–73.
Lee, N.; Kim, D., 2016. Cancer metabolism: Fueling more than just growth. Molecules and Cells., 39, 847–854.
Lee, S.; Kim, Y. J.; Kwon, S.; Lee, Y.; Young Choi, S.; Park, J.; Kwon, H. J., 2009. Inhibitory effects of flavonoids on TNF-α-induced IL-8 gene expression in HEK 293 cells. BMB Reports., 42, 265–270.
Li, W.; Kim, T. I.; Kim, J. H.; Chung, H. S., 2019. Immune checkpoint PD-1/PD-L1 CTLA-4/CD80 are blocked by rhus verniciflua stokes and its active compounds. Molecules., 24, 1–10.
Lim, W.; Park, S.; Bazer, F. W.; Song, G., 2017a. Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways. Journal of Cellular Biochemistry., 118, 1118–1131.
Lim, W.; Song, G., 2017b. Inhibitory effects of delphinidin on the proliferation of ovarian cancer cells via PI3K/AKT and ERK 1/2 MAPK signal transduction. Oncology Letters., 14, 810–818.
Lim, W.; Ryu, S.; Bazer, F. W.; Kim, S. M.; Song, G., 2018. Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. Journal of Cellular Physiology., 233, 3129–3140.
Link, A.; Balaguer, F.; Goel, A., 2010. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochemical Pharmacology., 80, 1771–1792.
Liu, R.; Ji, P.; Liu, B.; Qiao, H.; Wang, X.; Zhou, L.; Deng, T.; Ba, Y., 2017. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncology Letters., 13, 1024–1030.
Liu, X.; Suzuki, N.; Laxmi, Y. R. S.; Okamoto, Y.; Shibutani, S., 2012. Anti-breast cancer potential of daidzein in rodents. Life Sciences., 91, 415–419.
Lu, S.; Wang, Y., 2018. Nonmetabolic functions of metabolic enzymes in cancer development. Cancer Communications., 38.
Martín, M.; Goya, L.; Ramos, S., 2016. Preventive Effects of Cocoa and Cocoa Antioxidants in Colon Cancer. Diseases., 4, 6.
Martín, M. Á.; Serrano, A. B. G.; Ramos, S.; Pulido, M. I.; Bravo, L.; Goya, L., 2010. Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells. Journal of Nutritional Biochemistry., 21, 196–205.
McArthur, K.; Kile, B. T., 2018. Apoptotic Caspases: Multiple or Mistaken Identities? Trends in Cell Biology., 28, 475–493.
Meiyanto, E.; Hermawan, A.; Anindyajati, 2012. Natural products for cancer-targeted therapy: Citrus flavonoids as potent chemopreventive agents. Asian Pacific Journal of Cancer Prevention., 13, 427–436.
Mooradian, M. J.; Sullivan, R. J., 2017. Immunomodulatory effects of current cancer treatment and the consequences for follow-up immunotherapeutics. Future Oncology., 13, 1649–1663.
Moradzadeh, M.; Hosseini, A.; Erfanian, S.; Rezaei, H., 2017. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase. Pharmacological Reports., 69, 924–928.
Murphy, M. P., 2009. How mitochondria produce reactive oxygen species. Biochemical Journal., 417, 1–13.
Nalini, N.; Aranganathan, S.; Kabalimurthy, J., 2012. Chemopreventive efficacy of hesperetin (citrus flavonone) against 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Toxicology Mechanisms and Methods., 22, 397–408.
Neagu, M.; Constantin, C.; Popescu, I. D.; Zipeto, D.; Tzanakakis, G.; Nikitovic, D.; Fenga, C.; Stratakis, C. A.; Spandidos, D. A.; Tsatsakis, A. M., 2019. Inflammation and metabolism in cancer cell—mitochondria key player. Frontiers in Oncology., 9.
Niu, G.; Yin, S.; Xie, S.; Li, Y.; Nie, D.; Ma, L.; Wang, X.; Wu, Y., 2011. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells. Acta Biochimica et Biophysica Sinica., 43, 30–37.
Oliveira-Marques, V.; Marinho, H. S.; Cyrne, L.; Antunes, F., 2009. Modulation of NF-κB-dependent gene expression by H2O 2: A major role for a simple chemical process in a complex biological response. Antioxidants and Redox Signaling., 11, 2043–2053.
Pal, H. C.; Sharma, S.; Strickland, L. R.; Agarwal, J.; Athar, M.; Elmets, C. A.; Afaq, F., 2013. Delphinidin Reduces Cell Proliferation and Induces Apoptosis of Non-Small-Cell Lung Cancer Cells by Targeting EGFR/VEGFR2 Signaling Pathways. PLoS ONE., 8, 1–13.
Palit, S.; Kar, S.; Sharma, G.; Das, P. K., 2015. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. Journal of Cellular Physiology., 230, 1729–1739.
Panche, A. N.; Diwan, A. D.; Chandra, S. R., 2016. Flavonoids: An overview. Journal of Nutritional Science., 5.
Pandey, P.; Sayyed, U.; Tiwari, R. K.; Siddiqui, M. H.; Pathak, N.; Bajpai, P., 2019. Hesperidin Induces ROS-Mediated Apoptosis along with Cell Cycle Arrest at G2/M Phase in Human Gall Bladder Carcinoma. Nutrition and Cancer., 71, 676–687.
Park, H. J.; Jeon, Y. K.; You, D. H.; Nam, M. J., 2013. Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells. Food and Chemical Toxicology., 60, 542–549.
Park, S.; Lim, W.; Bazer, F. W.; Song, G., 2018a. Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated P38 and JNK MAPK pathways. Phytomedicine., 50, 238–246.
Park, W.; Park, S.; Lim, W.; Song, G., 2018b. Chrysin disrupts intracellular homeostasis through mitochondria-mediated cell death in human choriocarcinoma cells. Biochemical and Biophysical Research Communications., 503, 3155–3161.
Pérez-Cano, F. J.; Castell, M., 2016. Flavonoids, inflammation and immune system. Nutrients., 8, 8–11.
Perez-Vizcaino, F.; Fraga, C. G., 2018. Research trends in flavonoids and health. Archives of Biochemistry and Biophysics., 646, 107–112.
Qin, J.; Teng, J.; Zhu, Z.; Chen, J.; Huang, W. J., 2016. Genistein induces activation of the mitochondrial apoptosis pathway by inhibiting phosphorylation of Akt in colorectal cancer cells. Pharmaceutical Biology., 54, 74–79.
Ranganathan, S.; Halagowder, D.; Sivasithambaram, N. D., 2015. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS ONE., 10, 1–21.
Rather, R. A.; Bhagat, M., 2019. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health. Cancer Medicine.
Rehman, M. U.; Tahir, M.; Khan, A. Q.; Khan, R.; Lateef, A.; Oday-O-Hamiza; Qamar, W.; Ali, F.; Sultana, S., 2013. Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: Plausible role of NF-κB. Toxicology Letters., 216, 146–158.
Rodríguez-García, C.; Sánchez-Quesada, C.; Gaforio, J. J.; Gaforio, J. J., 2019. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants., 8, 1–23.
Rodríguez-Ramiro, I.; Martín, M. Á.; Ramos, S.; Bravo, L.; Goya, L., 2011. Comparative effects of dietary flavanols on antioxidant defences and their response to oxidant-induced stress on Caco2 cells. European Journal of Nutrition., 50, 313–322.
Rodríguez-Ramiro, I.; Ramos, S.; López-Oliva, E.; Agis-Torres, A.; Bravo, L.; Goya, L.; Martín, M. A., 2013. Cocoa polyphenols prevent inflammation in the colon of azoxymethane-treated rats and in TNF-α-stimulated Caco-2 cells. British Journal of Nutrition., 110, 206–215.
Sakamoto, Y.; Kanatsu, J.; Toh, M.; Naka, A.; Kondo, K.; Iida, K., 2016. The dietary isoflavone daidzein reduces expression of pro-inflammatory genes through PPARα/γ and JNK pathways in adipocyte and macrophage co-cultures. PLoS ONE., 11, 1–13.
SALMANI, J. M. M.; ZHANG, X. P.; JACOB, J. A.; CHEN, B. A., 2017. Apigenin’s anticancer properties and molecular mechanisms of action: Recent advances and future prospectives. Chinese Journal of Natural Medicines., 15, 321–329.
Sambantham, S.; Radha, M.; Paramasivam, A.; Anandan, B.; Malathi, R.; Chandra, S. R.; Jayaraman, G., 2013. Molecular Mechanism Underlying Hesperetin-induced Apoptosis by in silico Analysis and in Prostate Cancer PC-3 Cells. Asian Pacific Journal of Cancer Prevention., 14, 4347–4352.
Seydi, E.; Salimi, A.; Rasekh, H. R.; Mohsenifar, Z.; Pourahmad, J., 2018. Selective Cytotoxicity of Luteolin and Kaempferol on Cancerous Hepatocytes Obtained from Rat Model of Hepatocellular Carcinoma: Involvement of ROS-Mediated Mitochondrial Targeting. Nutrition and Cancer., 70, 594–604.
Seyfried, T. N.; Flores, R. E.; Poff, A. M.; D’Agostino, D. P., 2014. Cancer as a metabolic disease: Implications for novel therapeutics. Carcinogenesis., 35, 515–527.
Shafiee, G.; Saidijam, M.; Tavilani, H.; Ghasemkhani, N.; Khodadadi, I., 2016. Genistein induces apoptosis and inhibits proliferation of HT29 colon cancer cells. International Journal of Molecular and Cellular Medicine., 5, 178–191.
Shang, H. S.; Lu, H. F.; Lee, C. H.; Chiang, H. S.; Chu, Y. L.; Chen, A.; Lin, Y. F.; Chung, J. G., 2018. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environmental Toxicology., 33, 1168–1181.
Shirakami, Y.; Sakai, H.; Kochi, T.; Seishima, M.; Shimizu, M., 2016. Catechins and its role in chronic diseases. Advances in Experimental Medicine and Biology., 929, 67–90.
Singh, R.; Agarwal, R., 2006. Natural Flavonoids Targeting Deregulated Cell Cycle Progression in Cancer Cells. Current Drug Targets., 7, 345–354.
Sivagami, G.; Vinothkumar, R.; Preethy, C. P.; Riyasdeen, A.; Akbarsha, M. A.; Menon, V. P.; Nalini, N., 2012. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line - A comparative study. Food and Chemical Toxicology., 50, 660–671.
Solomon, L. A.; Ali, S.; Banerjee, S.; Munkarah, A. R.; Morris, R. T.; Sarkar, F. H., 2008. Sensitization of ovarian cancer cells to cisplatin by genistein: the role of NF-kappaB. Journal of Ovarian Research., 1, 9.
Sorrenti, V.; Vanella, L.; Acquaviva, R.; Cardile, V.; Giofrè, S.; Di Giacomo, C., 2015. Cyanidin induces apoptosis and differentiation in prostate cancer cells. International Journal of Oncology., 47, 1303–1310.
Souza, R. P.; Bonfim-Mendonça, P. D. S.; Gimenes, F.; Ratti, B. A.; Kaplum, V.; Bruschi, M. L.; Nakamura, C. V.; Silva, S. O.; Maria-Engler, S. S.; Consolaro, M. E. L., 2017. Oxidative Stress Triggered by Apigenin Induces Apoptosis in a Comprehensive Panel of Human Cervical Cancer-Derived Cell Lines. Oxidative Medicine and Cellular Longevity., 2017.
Sun, S.; Gong, F.; Liu, P.; Miao, Q., 2018. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway. Gene., 664, 50–57.
Sundaram, M. K.; Unni, S.; Somvanshi, P.; Bhardwaj, T.; Mandal, R. K.; Hussain, A.; Haque, S., 2019. Genistein modulates signaling pathways and targets several epigenetic markers in hela cells. Genes., 10, 1–20.
Tang, S. M.; Deng, X. T.; Zhou, J.; Li, Q. P.; Ge, X. X.; Miao, L., 2020. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine and Pharmacotherapy., 121, 109604.
Tavsan, Z.; Kayali, H. A., 2019. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomedicine and Pharmacotherapy., 116, 109004.
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology., 39, 44–84.
Van Dijk, C.; Driessen, A. J. M.; Recourt, K., 2000. The uncoupling efficiency and affinity of flavonoids for vesicles. Biochemical Pharmacology., 60, 1593–1600.
Vegliante, R.; Di Leo, L.; Ciccarone, F.; Ciriolo, M. R., 2018. Hints on ATGL implications in cancer: Beyond bioenergetic clues. Cell Death and Disease., 9.
Venancio, V. P.; Cipriano, P. A.; Kim, H.; Antunes, L. M. G.; Talcott, S. T.; Mertens-Talcott, S. U., 2017. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food and Function., 8, 307–314.
Vu, T. H.; Shipley, J. M.; Bergers, G.; Berger, J. E.; Helms, J. A.; Hanahan, D.; Shapiro, S. D.; Senior, R. M.; Werb, Z., 1998. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypetrophic chondrocytes. Cell., 93, 411–422.
Wang, P.; Heber, D.; Henning, S. M., 2012. Quercetin increased the antiproliferative activity of green tea polyphenol (-)-epigallocatechin gallate in prostate cancer cells. Nutrition and Cancer., 64, 580–587.
Weinberg, F.; Ramnath, N.; Nagrath, D., 2019. Reactive oxygen species in the tumor. Cancers., 11, 1–20.
Wu, D.; Zhang, J.; Wang, J.; Li, J.; Liao, F.; Dong, W., 2016. Hesperetin induces apoptosis of esophageal cancer cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species. Tumor Biology., 37, 3451–3459.
Wu, Q.; Kroon, P. A.; Shao, H.; Needs, P. W.; Yang, X., 2018. Differential Effects of Quercetin and Two of Its Derivatives, Isorhamnetin and Isorhamnetin-3-glucuronide, in Inhibiting the Proliferation of Human Breast-Cancer MCF-7 Cells. Journal of Agricultural and Food Chemistry., 66, 7181–7189.
Xia, R.; Sheng, X.; Xu, X.; Yu, C.; Lu, H., 2018. Hesperidin induces apoptosis and GO/G1 arrest in human non-small cell lung cancer A549 cells. International Journal of Molecular Medicine., 41, 464–472.
Xu, L.; Zhang, Y.; Tian, K.; Chen, X.; Zhang, R.; Mu, X.; Wu, Y.; Wang, D.; Wang, S.; Liu, F.; Wang, T.; Zhang, J.; Liu, S.; Zhang, Y.; Tu, C.; Liu, H., 2018a. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. Journal of Experimental and Clinical Cancer Research., 37, 1–15.
Xu, Y.; Tong, Y.; Ying, J.; Lei, Z.; Wan, L.; Zhu, X.; Ye, F.; Mao, P.; Wu, X.; Pan, R.; Peng, B.; Liu, Y.; Zhu, J., 2018b. Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncology Letters., 15, 9117–9125.
Xue, C.; Chen, Y.; Hu, D. N.; Iacob, C.; Lu, C.; Huang, Z., 2016. Chrysin induces cell apoptosis in human uveal melanoma cells via intrinsic apoptosis. Oncology Letters., 12, 4813–4820.
Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C., 2018. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients., 10, 1–23.
Youn, H. S.; Lee, J. Y.; Saitoh, S. I.; Miyake, K.; Kang, K. W.; Choi, Y. J.; Hwang, D. H., 2006. Suppression of MyD88- and TRIF-dependent signaling pathways of toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochemical Pharmacology., 72, 850–859.
Zaidi, N.; Lupien, L.; Kuemmerle, N. B.; Kinlaw, W. B.; Swinnen, J. V.; Smans, K., 2013. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Progress in Lipid Research., 52, 585–589.
Zaidun, N. H.; Thent, Z. C.; Latiff, A. A., 2018. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sciences., 208, 111–122.
Zhang, H.; Zhong, X.; Zhang, X.; Shang, D.; Zhou, Y.; Zhang, C., 2016. Enhanced anticancer effect of ABT-737 in combination with naringenin on gastric cancer cells. Experimental and Therapeutic Medicine., 11, 669–673.
Zhang, J.; Song, J.; Wu, D.; Wang, J.; Dong, W., 2015a. Hesperetin induces the apoptosis of hepatocellular carcinoma cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species, ATP and calcium. Medical Oncology., 32.
Zhang, J.; Wu, D.; Vikash; Song, J.; Wang, J.; Yi, J.; Dong, W., 2015b. Hesperetin Induces the Apoptosis of Gastric Cancer Cells via Activating Mitochondrial Pathway by Increasing Reactive Oxygen Species. Digestive Diseases and Sciences., 60, 2985–2995.
Zhao, Z.; Jin, G.; Ge, Y.; Guo, Z., 2019. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology., 27, 1021–1036.
Zhong, H.; Xiao, M.; Zarkovic, K.; Zhu, M.; Sa, R.; Lu, J.; Tao, Y.; Chen, Q.; Xia, L.; Cheng, S.; Waeg, G.; Zarkovic, N.; Yin, H., 2017. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: A novel link between oxidative stress and cancer. Free Radical Biology and Medicine., 102, 67–76.
Zhou, Q.; Xu, H.; Yu, W.; Li, E.; Wang, M., 2019. Anti-inflammatory effect of an apigenin-maillard reaction product in macrophages and macrophage-endothelial cocultures. Oxidative Medicine and Cellular Longevity.
Zhu, Y.; Mao, Y.; Chen, H.; Lin, Y.; Hu, Z.; Wu, J.; Xu, X.; Xu, X.; Qin, J.; Xie, L., 2013. Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells. Cancer Cell International., 13, 1–7.