KARBON AKTIF BERBASIS ECENG GONDOK

Authors

  • Widi Astuti
  • Triastuti Sulistyaningsih

DOI:

https://doi.org/10.15294/.v0i0.18

Keywords:

brilliant blue, eceng gondok, isotherm, karbon aktif

Abstract

Limbah zat warna sintetis yang dihasilkan dari industri batik, tekstil, tinta dan cat memberikan dampak negatif bagi lingkungan perairan karena bersifat toksik, mutagenik, karsinogenik, dan sulit terdegradasi. Adsorpsi menggunakan karbon aktif berbasis limbah biomasa merupakan metode yang efektif dalam pengolahan limbah cair mengandung zat warna. Salah satu limbah biomassa yang dapat digunakan sebagai prekursor dalam sintesis karbon aktif adalah eceng gondok karena kandungan lignoselulosanya yang tinggi. Untuk menurunkan penggunaan energi dan memperbaiki karakteristik karbon aktif, proses aktivasi kimia dilakukan dengan bantuan gelombang mikro. Hasil penelitian menunjukkan bahwa aktivasi dengan NaOH menggunakan pemanasan gelombang mikro menghasilkan karbon aktif dengan ukuran pori yang lebih besar dan seragam (12,4-16,2 mm) daripada penggunaan pemanasan konvensional menggunakan tubular furnace yang pada umumnya digunakan pada sintesis karbon aktif (4,95-14 mm).  Sementara, karbon tanpa aktivasi mempunyai ukuran pori 3,4-5,3 mm. Uji adsorpsi terhadap zat warna brilliant blue menunjukkan 92,3% zat warna dapat teradsorpsi pada pH 2. Dalam hal ini, kesetimbangan dicapai setelah 150 menit. Hasil penelitian juga menunjukkan bahwa model isotherm Langmuir lebih sesuai daripada model isotherm Freundlich dengan nilai kapasitas adsorpsi 140,55 mg/g.

References

Aljeboree, A.M., Alshirifi, A.N., Alkaim, A.F. 2017. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arabian Journal of Chemistry, 10, S3381– S3393.
Ahmed, M.B., Johir, Md. A.H., Zhou, J.L., Ngo, H.H., Nghiem, L.D., Richardson, C., Moni, M.A., Bryant, M.R. 2019. Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption, Journal of Cleaner Production, 225, 405-413.
Ao, W., Fu, J., Mao, X., Kang, Q., Ran, C., Liu, Y., Zhang, H., Gao, Z., Li, J., Liu, G., Dai, J. 2018. Microwave assisted preparation of activated carbon from biomass : A review, Renewable and Sustainable Energy Reviews, 92, 958–979.
Astuti, W., Sulistyaningsih, T., Kusumastuti, E., Thomas, G.Y.R.S., Kusnadi, R.Y. 2019. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal, Bioresource Technology, 287, 121426.
Baytar, O., Şahin, Ö., Saka, C. 2018. Sequential application of microwave and conventional heating methods for preparation of activated carbon from biomass and its methylene blue adsorption, Applied Thermal Engineering, 138, 542-551.
Beluci, N.C.L., Mateus, G.A.P., Miyashiro, C.S, Hamem, N.C., CGomes, R.G., Fagundes-Klen, M.R., bergamasco, R., Viera, A.M.S. 2019. Hybrid treatment of coagulation / flocculation process followed by ultrafiltration in TiO2 - modified membranes to improve the removal of reactive black 5 dye, Science of the Total Environment, 664, 222–229.
Bergaoui, M., Nakhli, A., Benguerba, Y., Khalfaoui, M., Erto, A., Soetaredjo, F.E, Ismadji, S., Ernst, B. 2018. Novel insights into the adsorption mechanism of methylene blue onto organo- bentonite: Adsorption isotherms modeling and molecular simulation, Journal of Molecular Liquids, 272,697-707.
Khumalo, M.B.B., Khumalo, N. P., Nthunya, L. N., De Canck, E., Deres, S., Verliefde, A.R.D., Kuvarega, A.T., Mhlanga, S.D., Dlamini, D.S. 2019. Congo red dye removal by direct membrane distillation using PVDF/ PTFE membrane. Separation and Purification Technology, 211, 578–586.
Nidheesh, P.V, Zhou, M., Oturan, M.A. 2018. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes, Chemosphere, 197, 210–227.
Pathania, D., Sharma, S., Singh, P. 2017. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arabian Journal of Chemistry, 10, S1445–S1451.
Priya, E.S., Selvan, P.S. 2017. Water hyacinth (Eichhornia crassipes)–An efficient and economic adsorbent for textile effluent treatment – A review, Arabian journal of chemistry, 10(2), S3548-S3558.
Sabarish, R., Unnikrishnan, G. 2018. PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: fabrication, characterization, adsorption, kinetics and antimicrobial properties. Biochemical Pharmacology, 6(4), 3860-3873.
Stavrinou, A., Aggelopoulos, C. A., Tsakiroglou, C. D. 2018. Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato : Adsorption kinetics and equilibrium isotherms as a tool. Journal of Environmental Chemical Engineering, 6, 6958–6970.
Tahir, M. A., Bhatti, H. N., Iqbal, M. 2016. Solar red and brittle blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies. Journal of Environmental Chemical Engineering, 4(2), 2431-2439.
Thue, P. S., Adebayo, M. A., Lima, E. C., Sieliechi, J. M., Machado, F. M., Dotto, G. L., Vaghetti, J.C.P., Dias, S. L. P. 2016. Preparation characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. Journal of Molecular Liquids, 223, 1067–1080.
Van, K. L., Thi, T.T.L. 2014. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Progress in Natural Science: Materials International, 24(2), 1–8.
Xiao, X., Liu, D., Yan, Y., Wu, Z., Wu, Z., Cravotto, G. 2015. Preparation of activated carbon from Xinjiang region coal by microwave activation and its application in naphthalene, phenanthrene and pyrene adsorption. Journal of the Taiwan Institute of Chemical Engineers, 53, 160-167.

Downloads

Published

2021-05-05

How to Cite

Astuti, W., & Sulistyaningsih, T. (2021). KARBON AKTIF BERBASIS ECENG GONDOK. Inovasi Sains Dan Kesehatan, 6. https://doi.org/10.15294/.v0i0.18

Issue

Section

Articles