FOTOKATALIS Ni-N-TiO2 UNTUK DEGRADASI METILEN BIRU
DOI:
https://doi.org/10.15294/.v0i0.17Keywords:
doping Ni, N, fotokatalis, TiO2, metilen biruAbstract
Sintesis dan karakterisasi material fotokatalis Ni-N-TiO2 menggunakan metode sol gel telah dilakukan. Tujuan riset adalah untuk mempelajari pengaruh doping Ni dan N terhadap TiO2 dengan prekusor Ti-butoksida yang akan digunakan untuk degradasi metilen biru. Sintesis dilakukan dengan memvariasi suhu kalsinasi, persen mol Ni dan persen mol N. Variasi suhu kalsinasi dilakukan pada suhu 400˚C; 500°C dan 600°C, variasi persen mol Ni dan persen mol N adalah 2,5%; 5% dan 10%. Sampel hasil sintesis dikarakterisasi menggunakan XRD, DR-UV, FTIR, SEM-EDX dan dilakukan uji ativitas degradasi metilen biru menggunakan spektrofotometer UV-Vis. Hasil analisis dengan XRD menunjukkan fasa anatas pada suhu 450oC pada puncak-puncak 25,35˚; 38,62˚; 48,09˚; 55,12˚; 62,75˚ dengan ukuran partikel masing-masing 8,48 nm; 12,1 nm dan 14,18 nm. Hasil karakterisasi DR-UV menunjukkan bahwa peningkatan persen mol Ni menurunkan nilai band gap TiO2, sedangkan untuk doping N terjadi hal sebaliknya. Untuk doping ganda Ni dan N, peningkatan salah satu dopan meningkatkan nilai band gap TiO2. Hasil karakterisasi dengan FTIR menunjukkan serapan utama pada daerah 500-900 cm-1 yang merupakan vibrasi ulur Ti-O pada TiO2, 3448 cm-1 merupakan vibrasi ulur O-H milik ikatan Ti-OH, dan serapan pada daerah 1635 cm-1 merupakan vibrasi tekuk O-H milik H2O. Spektrum 407,63 dan 1473,62 merupakan spektrum dari Ti-N dan N-O. Uji aktivitas katalis Ni-N-TiO2 menunjukkan waktu optimum degradasi pada menit ke 60 dengan persentase degradasi 60,15%.
References
Anshari, S.A., Khan, M.M., Ansari, M.O., and Cho, M.H. (2016). Nitrogen- doped Titanium Dioxide (N-doped TiO2) for Visible Light Photocatalysis. New J. Chem., 40, 3000-3009.
Barbero, N., and Vione., D. (2016). Why Dyes Should not be Used to Test the Photocatalytic Activity of Semiconductor Oxides. Environ. Sci. Technol., 50, 2130-2131.
Cheng. (2012). Enhanced Photocatalytic Activity of Nitrogen Doped TiO2 Anatase Nano-Particle under Smulated Sunlight Irradiation, Energi Procedia, 16, 598605.
Choi, J., Hyunwoong Park and michael R. (2010). Effects of single Metal- Ion Doping on the Visible-Light Photoreactivity of TiO2. J. Phys. Chem. 114, 783-792.
Dolat. (2014). Preparation, Characterization and Charge Transfer Studies of Nickel-Modified and Nickel, Nitrogen co-modified Rutil Titanium Dioxide for Photocatalytic Aplication. Chemical Engineering Journal, 239, 149-157.
Effendi, M. (2012). Analisis Sifat Optik Lapisan Tipis TiO2 Doping Nitrogen yang Disiapkan dengan Metode Spin Coating. Prosiding Pertemuan Ilmiah. ISSN: 0853-0823.
Fujishima, A., Kazuhito, H., and Hiroshi, I., (2005). TiO2 Photocatalysis A Historical Overview and Future Prospects. Japanese Journal of Applied Phisics, 44, 12.
Ghamsari, S. (2013). Room Temperature Synthesis of Highly Crystalline TiO2 Nanoparticles. Journal Materials Letters, 92, 287-290.
Gnanaprakasam, A., Sivakumar, V.M., and Thirumarimurugan, M. (2015). Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian J. Mater. Sci., 3, 1-16.
Gurkan, Y.Y., Turken, N., and Cinar, Z. (2012). Photocatalytic Degradation of Cefazolin over N-doped TiO2 under UV and Sunlight Irradiation : Prediction of the Reaction Paths Via Conseptual DFT, Chem. Eng. J. 184. 113-124.
Hakim, A. (2013). Sintesis dan Karakterisasi Fe- TiO2, N- TiO2 dan Fe- N- TiO2. Skripsi: Universitas Gajah Mada, Yogyakarta.
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J-M. (2001). Photocatalytic Degradation Pathway of Metylene Blue in Water. App. Catal. B: Enviromental, 31, 145-157.
Hu, Che-Cian and Hsisheng T.. (2010). Structural Feature of p-type Semiconducting NiO as a co-Catalyst for Photocatalytic Water Splitting. Journal of Catalysis, 272.
Huang, K., Xiong, L.C. and Liao, M. (2012). Research Article Preparation and Characterization of Visible-Light-Activated Fe-N Co-doped TiO2 and Its Photocatalytic Inactivation Effect on Leukimia Tumors. Int. J. Photoenergy, 2012, Article ID 631435.
Humayun, H., Raziq, F., Khan, A., Luo, W. (2018). Modification Strategies of TiO2 for Potential Applications in Photocatalysis: Critical Review, Green Chemistry Letters and Reviews, 11(2), 86-102.
Ibram. (2011). Preparation and Characterization of Ni-Doped TiO2 Material for Photocurrent and Photocatalytic Aplications. Research Article Volume, 2012. Ismail, A.A., and Bahnemann, D.W. (2014). Photochemical Splitteing of Water for Hydrogen Production by Photocatalysis. A Review: Solar Energy Materials and Solar Cells, 128, 85-101.
Jafari, S., Investigation of Adsorption of Dyes Onto Modified Titanium Dioxide. (2016). Thesis PhD, Mikkeli University Consortium, Mikkeli, Finland.
Jiang, C., Lee, K.Y., Parlett, C.M.A., Bayazit, M.K., Lau, C.C., Ruan, Q., Moniz,S.J.A., Lee, A.F., and Tang, J. (2015). Size-controlled TiO2 Nanoparticles on Porous Hosts for Enhanced Photocatalystic Hydrogen Production. App. Catal. A: General, 1-3.
Joshi, K.M., Patil, B.N. and Shrivastava V.S. (2011). Preparation, Characteri zat ion and Appli cations of Nanost ructure Photocatalysts, Arch. App. Sci. Res., 3(2), 596-605.
Khan, H., and Swati, I.K. (2016). Fe3+ Oxygen Vacancies and Ti3+ -doped Anatase TiO2 with d-d Transition, Centres: Synthesis, Characterization, UV/vis Photocatalytic and Mechanistic Studies. Industrial and Engineering Chemistry Researh, 2-23.
Kibasomba, P.M., Dhlamini, S., Maaza, M., Liu, C.P., Rashad M.M., Rayan, D.A., Mwakikunga, B.W. (2018). Strain and Grain Size of TiO2 Nanoparticles from TEM, Raman Spectroscopy and XRD: The Revisiting of Williamson-Hall plot Method. Results in Physics, 9, 628-635.
Lestari, M.W.. (2013). Sintesis dan Karakterisasi Nanokatalis CuO/TiO2 yang Diaplikasikan pada Proses Degradasi Limbah Fenol. Indo. J. Chem, 2.
Li. (2011). Preparation of N, Fe co-doped TiO2 with Visible Lihgt Response. Powder Technol., 207, 165-169.
Linsebigler, A.L., Lu, G., and Yates, J.T., (1995), Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Rules, Chem. Rev., 95, 735-758.
Motahari, F., Mozdianfard, and Faezah. (2014). NiO Nanostructural: Synthesis, Characterization and Photocatalyst Aplication in Die Pollution Waswater Treatment. Article RSC Advances.
Pawar, M., Sendogdular, S.T., and Gouma, P. (2018). Review Article: A Brief Overview of TiO2 Photocatalyst for Organis Dye Remediation: Case Study of Reaction Mechanisms Involved in Ce-TiO2 Photocatalysts System. Journal of Nanomaterials, 2018, 13.
Radecka M., Rekas M, Trenczek-Zajac A, and Zakrzewsk K. (2008). Importance of the band gap energi and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources., 181, 46-55.
Rahman, T. (2014). Sintesis Titanium Dioksida Nanopartikel. Jurnal Integrasi Proses. 5(1), 15-29.
Sayilkan, F., Asilturk, M., Tatar, P., Kiraz, N., Arpac, E., and Sayilkan, H. (2007). Preparation of re-usable photocatalytic filter For degradation of malachite green dye under UV and Vis- irradiation. Journal of Hazardous Materials, 12, 3.
Slamet. (2012). Photocatalytic Reforming of Glysero-Water Over Nitrogen and Nickel-Doped Titanium Dioxide Nanoparticles. Journal of Engineering & Technology . IJET, 12, 06.
Sun, X., Dong J., and Zhang, Y. (2010). Preparation of Nanocrystallin TiO2 Photocatalyst of Ce/N-Codoped TiO2, Particles for Production of H2 by Photocatalytic Spitting Water, Under Visible Light. Catal. Lett., 43, 87-90.
Takashi, H,. Sunagawa Y. S Myagmarjav, K Yamamoto, N Sato, and Muramatsu. (2003). Reductive Deposition of Ni-Zn Nanopartikel selectively on TiO2 Fine Particles in the Liquid Phase. Materials Transactions, 44, 11.
Yen, Wang, and Chang. (2011). Characterization and Photocatalytic Activity of Fe and N-co-Deposited TiO2 and First Prinsiples Study for Electronic Structure. J. Solid State Chem. 184, 2053- 2060
Yin, W.J., Chen, S., Yang, J.H., Gong, X.G., Yan, Y., and Wei, S.H. (2010). Effective Band Gap narrowing of Anatase TiO2 by Strain Along a Soft Crystal Direction. Applied Physics Letter, 96.
Zaleska, A. (2008), Doped-TiO2: A Review, Recent Patents on Engineering, Bentham Science Publishers Ltd, 2, 157-164
Zsolt, P. (2011). Synthesis, Morpho-structural Characterization and Enveronmental Aplication of Titania Photocatalysts Obtained by Rapid Crystallization. Ph.D Dissertation. University of Szeged, Babes-Bolyai University. Szaged, Hungary, Cluj-Napoca, Romania.